February 19, 2021

List of Identities

Return to MAT 130 main page


Reciprocal Identities

csc(θ)=1sin(θ)sec(θ)=1cos(θ)cot(θ)=1tan(θ)sin(θ)=1csc(θ)cos(θ)=1sec(θ)tan(θ)=1cot(θ)

Quotient Identities

tan(θ)=sin(θ)cos(θ)cot(θ)=cos(θ)sin(θ)

Pythagorean Identities

sin2(θ)+cos2(θ)=1tan2(θ)   +   1   =sec2(θ)1   +   cot2(θ)=csc2(θ)

Cofunction Identities

sin(θ)=cos(π2θ)tan(θ)=cot(π2θ)sec(θ)=csc(π2θ)cos(θ)=sin(π2θ)cot(θ)=tan(π2θ)csc(θ)=sec(π2θ)

Even-Odd Identities

sin(θ)=sin(θ)cos(θ)=cos(θ)csc(θ)=csc(θ)sec(θ)=sec(θ)tan(θ)=tan(θ)cot(θ)=cot(θ)

Periodic Identities

sin(θ + 2π)=sin(θ)tan(θ + π)=tan(θ)csc(θ + 2π)=csc(θ)cot(θ + π)=cot(θ)cos(θ + 2π)=cos(θ)sec(θ + 2π)=sec(θ)

Sum and Difference Identities

sin(α+β)=sin(α)cos(β)+cos(α)sin(β)sin(αβ)=sin(α)cos(β)cos(α)sin(β)cos(α+β)=cos(α)cos(β)sin(α)sin(β)cos(αβ)=cos(α)cos(β)+sin(α)sin(β)tan(α+β)=tan(α)+tan(β)1tan(α)tan(β)tan(αβ)=tan(α)tan(β)1+tan(α)tan(β)

Double Angle Identities

sin(2θ)=2sin(θ)cos(θ)cos(2θ)=cos2(θ)sin2(θ)=12sin2(θ)=2cos2(θ)1tan(2θ)=2tan(θ)1tan2(θ)

Half Angle Identities

|sin(θ2)|=1cos(θ)2|cos(θ2)|=1+cos(θ)2tan(θ2)=1cos(θ)sin(θ)=sin(θ)1+cos(θ)

This is all the identities we'll use in class. There are a few others that sometimes come in handy for other applications, so I'm including them below for the sake of completeness. It's a good exercise to try to prove them from the sum and difference identities, using systems of equations!

Product-to-Sum Identities

sin(α)sin(β)=12(cos(αβ)cos(α+β))cos(α)cos(β)=12(cos(αβ)+cos(α+β))sin(α)cos(β)=12(sin(α+β)+sin(αβ))cos(α)sin(β)=12(sin(α+β)sin(αβ))

Sum-to-Product Identities

sin(α)+sin(β)=2sin(α+β2)cos(αβ2)sin(α)sin(β)=2cos(α+β2)sin(αβ2)cos(α)+cos(β)=2cos(α+β2)cos(αβ2)cos(α)cos(β)=2sin(α+β2)sin(αβ2)


Return to MAT 130 main page


No comments :

Post a Comment

Contact Form

Name

Email *

Message *